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An Effective T-cell Response to Lymphoma
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Immune checkpoints — Mechanisms of resistance

Other checkpoints involved
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1. Other checkpoints - Exhausted T-cells in lymphoma express TIM3
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1. Other checkpoints - TIGIT expression defines intratumoral T-
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1. Other checkpoints - LAG-3 and PD-1 blockade reverses the
dysfunction of T cells
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2. Profound T-cell dysfunction - Functional characterization of
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2. Profound T-cell dysfunction - TIGIT and PD-1 Identify T-Cells
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2. Profound T-cell dysfunction - Complicating Factor: Intratumoral

T-cells have downregulated co-stimulatory receptors
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2. Profound T-cell dysfunction - Rescue of exhausted CD8 T cells by

PD-1-targeted therapies is CD28-dependent
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3. Tumor genetics — “Hot vs Cold”
Mechanisms associated with inflamed lymphoma environments.
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3. Tumor genetics — “Hot vs. Cold”
Mechanisms associated with non-inflamed lymphoma environments.
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3. Tumor genetics — Reason for lack of response in FL/DLBCL - PD-

L1/2 overexpression not commonly genetically driven

Copy number gain/amplification appears most important
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4. Tumor microenvironment and response to immune checkpoint
blockade therapy in lymphoma

Non-Inflamed Lymphomas
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4. Tumor microenvironment: Immunostimulatory cytokines induce
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4. Tumor microenvironment: Soluble PD-L1 inhibits T-cell
Function at Remote Sites
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4. Tumor microenvironment - Interaction of CXCR5+ HRS cells with
ligand-expressing CXCL13+ macrophages is prognostic
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Gene signature score

4. Tumor microenvironment - IL18* monocytes are associated
with lack of response to PD-1 blockade
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5. Role of gut microbiome in the outcome of lymphoma patients

Shannon

treated with checkpoint inhibitors—The MicroLinf Study
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Strategy #1. Blocking other checkpoints —

Nivolumab and Ipilimumab in classic Hodgkin Lymphoma
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Strategy #1. Blocking other checkpoints — Favezelimab (anti—-LAG-3)

and pembrolizumab in R/R Hodgkin lymphoma
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Strategy #2. Profound T-cell dysfunction - Varlilumab (agonist anti-

CD27 antibody) for hematologic malignancies
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Strategy #3 -EZH2 inhibition enhances Bispecifics by inducing
lymphoma immunogenicity and improving T cell function

EZH2
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Strategy #4. Tumor microenvironment: Phase 1 trial of TTI-621, a
novel immune checkpoint inhibitor targeting CD47

Best response in patients with DLBCL
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Strategy #4. Tumor microenvironment:

Bispecific antibody AFM13 + Pembrolizumab in cHL
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Strategy #4 — Adding Tislelizumab to Timdarpacept (SIRPa-Fc)
in cHL patients failing anti-PD-1 therapy

Duration of Response

» With the median follow-up

» time of 6.87 months:
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Strategy #5 — Nivolumab plus ipilimumab with or without live

bacterial supplementation in metastatic renal cell carcinoma
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How to overcome resistance to immune checkpoints

1. Other checkpoints involved
- Blocking multiple checkpoints has promise

2. T-cell not activated/profound T-cell dysfunction
- May need to replace immune dysfunctional cells

3. Tumor genetics
- Could be modulated by EZH2 inhibition

4. Tumor microenvironment/soluble ligands
- Opportunity to engage the innate immune system

5. Microbiome
- Could change the fecal (or skin) microbiome
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